Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Heterotrimeric G-proteins modulate multiple signaling pathways in many eukaryotes. In plants, G-proteins have been characterized primarily from a few model angiosperms and a moss. Even within this small group, they seem to affect plant phenotypes differently: G-proteins are essential for survival in monocots, needed for adaptation but are nonessential in eudicots, and are required for life cycle completion and transition from the gametophytic to sporophytic phase in the moss Physcomitrium (Physcomitrella) patens. The classic G-protein heterotrimer consists of three subunits: one Gα, one Gβ and one Gγ. The Gα protein is a catalytically active GTPase and, in its active conformation, interacts with downstream effectors to transduce signals. Gα proteins across the plant evolutionary lineage show a high degree of sequence conservation. To explore the extent to which this sequence conservation translates to their function, we complemented the well-characterized Arabidopsis Gα protein mutant, gpa1, with Gα proteins from different plant lineages and with the yeast Gpa1 and evaluated the transgenic plants for different phenotypes controlled by AtGPA1. Our results show that the Gα protein from a eudicot or a monocot, represented by Arabidopsis and Brachypodium, respectively, can fully complement all gpa1 phenotypes. However, the basal plant Gα failed to complement the developmental phenotypes exhibited by gpa1 mutants, although the phenotypes that are exhibited in response to various exogenous signals were partially or fully complemented by all Gα proteins. Our results offer a unique perspective on the evolutionarily conserved functions of G-proteins in plants.more » « less
-
Summary Plants being sessile integrate information from a variety of endogenous and external cues simultaneously to optimize growth and development. This necessitates the signaling networks in plants to be highly dynamic and flexible. One such network involves heterotrimeric G‐proteins comprised of Gα, Gβ, and Gγ subunits, which influence many aspects of growth, development, and stress response pathways. In plants such as Arabidopsis, a relatively simple repertoire of G‐proteins comprised of one canonical and three extra‐large Gα, one Gβ and three Gγ subunits exists. Because the Gβ and Gγ proteins form obligate dimers, the phenotypes of plants lacking the soleGβor allGγgenes are similar, as expected. However, Gα proteins can exist either as monomers or in a complex with Gβγ, and the details of combinatorial genetic and physiological interactions of different Gα proteins with the sole Gβ remain unexplored. To evaluate such flexible, signal‐dependent interactions and their contribution toward eliciting a specific response, we have generated Arabidopsis mutants lacking specific combinations ofGαandGβgenes, performed extensive phenotypic analysis, and evaluated the results in the context of subunit usage and interaction specificity. Our data show that multiple mechanistic modes, and in some cases complex epistatic relationships, exist depending on the signal‐dependent interactions between the Gα and Gβ proteins. This suggests that, despite their limited numbers, the inherent flexibility of plant G‐protein networks provides for the adaptability needed to survive under continuously changing environments.more » « less
An official website of the United States government
